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J. Phys. A: Math. Gen. 15 (1982) 1191-1200. Printed in Great Britain 

Proof of Dirac's conjecture concerning the generators of 
surfaces of physically equivalent points 

D M Appleby 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

Received 29 September 1981 

Abstract. Dirac conjectured that in a constrained Hamiltonian system the surfaces of points 
physically equivalent to one another are generated by the totality of first-class constraints, 
both primary and secondary. A proof is given. 

1. Introduction 

In his book Dirac (1964) postulates, but does not prove, that in a constrained 
Hamiltonian system surfaces of points physically equivalent to one another are 
generated by the set of all first-class constraints, both primary and secondary. I supply 
the proof for systems having a finite number of degrees of freedom, subject to the 
following assumptions: 

(1) Every point in phase space has a neighbourhood within which all solutions to the 
equations of motion are analytic functions of time, provided the arbitrary functions are 
themselves analytic. 

(2) The ranks of various matrices I shall consider do not vary over the physically 
allowed surface in phase space. 

(3) The surface of points physically equivalent to some particular point is not 
enlarged by considering trajectories determined by non-analytic arbitrary functions, 
nor by considering trajectories which start outside the neighbourhood defined in 
assumption (1). 

The proof will be in two parts. In the first I shall show that every first-class constraint 
is a linear combination of quantities of the form 

H r 4  
where H is the Hamiltonian, 4 is a first-class primary constraint, r is some integer, and 
where I have employed the notation 

def 
AlAz. .  .A,  = {Ai, {Az,. . . {A,-l, A,}. . .}}, 

If, and only if, there is the possibility of confusion, I shall denote ordinary, 
arithmetic, multiplication by a dot: 

In the second part, I shall show that such quantities also constitute the complete set 
of generators of the surfaces of physically equivalent points. 
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2. The structure of the system of constraints 

In the Dirac formulation of classical mechanics there is associated to each of a large class 
of Lagrangians, a Hamiltonian formalism in which the system is constrained to lie on a 
surface in phase space defined by the vanishing of the primary constraints. The 
equations of motion are generated by the expression 

where Ho is the Hamiltonian, the q5a are the primary constraints, and the ua are 
arbitrary functions of position in phase space. If the system admits cyclic motion, they 
are arbitrary functions of time also. 

It may happen that some trajectories leave the physical surface. To ensure 
consistency, it is then necessary either to reduce the arbitrariness in the equations of 
motion (by fixing some of the U), or to reduce the dimensionality of the physically 
allowed surface (by imposing further, secondary, constraints), or both. The structure of 
the system of constraints after consistency has been imposed is described by the 
following: 

Theorem 1. There exists a linear, invertible, transformation of the original set of 
primary constraints. The new primary constraints defined by this transformation (and 
which determine the same surface as the old ones) may be sorted into r sets of primary 
second-class constraints, for some integer r, and one set of primary first-class 
constraints. A new Hamiltonian H may be formed from the old Hamiltonian Ho by 
adding to it a suitable linear combination of second-class primary constraints. H is 
first-class. The secondary constraints are then formed by taking Poisson brackets 
between H and the primary constraints as indicated in table 1. The second-class 
secondary constraints so obtained are all linearly independent. The first-class secon- 
dary constraints may not be. This tabulation of constraints is exhaustive, however. 

Table 1. 

First-class 
Second-class constraints constraints 

Secondary 
constraints 

H,-24$-1) Hr-24:) Hr-24: 

Hr-14:) Hr-14: 

4:) denotes the ath member of the ith class of second-class primary constraint. a = 1 , 2 , .  . . , ni. ni may 
vanish. 
4: denotes the ath first-class primary constraint. a = 1 , 2 , .  . . , n ~ .  
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Proof. This is given in the appendix. 

The significance of the division of the second-class primary constraints into r sets 
will become clear on reading the proof. For the sequel it is only necessary to appreciate 
that quantities of the form H s 4 z  can be written as linear combinations of first-class 
constraints and include every first-class constraint. 

The motion is generated by 

H + U. 4;. 

In this and subsequent expressions summation is over values of lower indices com- 
patible with those of upper ones-in this case 1 + nF. The U. are arbitrary functions. 

3. The generators of surfaces of physically equivalent points 

Two points are physically equivalent (PE) if they can be reached in the same time from a 
common ancestral point. Suppose x ( s )  is a curve of points PE to some point x = x ( 0 ) .  
Then there holds the following: 

Theorem 2. For any function X on phase space (which may be a coordinate function) 

for some set of coefficients Ch. Conversely any choice of coefficients defines a curve in 
the surface PE to x. 

Remark. In other words, the first-class constraints generate the PE surfaces. 

Proof. An arbitrary curve in the surface PE to x may, at least locally, be constructed as 
follows. Choose a family of analytic arbitrary functions u,(s) parametrised by s so that 
u,(O) = 0. Define 

H ( s )  = H + u,(s) * 4;. 

Proceed backwards at time t down the trajectory through x generated by H ( s )  to 
reach a point y(s, t) (see figure 1). Then move forwards a time t along the trajectory 
through y(s, t )  generated by H, to reach a point x(s, t). The curve of points x ( s ,  t), 

Figure 1. 
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considered as a function of s for fixed f ,  is the desired PE curve. By assumption (3) every 
PE curve can be generated in this way. 

By assumption (l) ,  for sufficiently small t, 

where 

I have assumed that the U are time-independent, This leads to no loss of generality 

It is convenient to make the following successive redefinitions of the indices and 
provided none of the trajectories is closed-i.e. provided t is small enough. 

their ranges: 

m=i+j:O+m m : o+oo 
1 :O+m p :O+m u = m - p  :O+m 

k : o + u  

P : O + k  

(see figure 2). Then 

t '  
(The indices take vdws within 
the tetrahedron A N D .  I 

L 
C m p  
Lc 

Figure 2. 

This simplifies with the help of the results 

u ! i ( m - u + s ) = ( m - i + l )  
r = ~  m - u  m - u + l  

and 
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the first of which follows from the identity 

( X  + 1)"-"], = - [ ( X  + l ) m - i + l -  1 ( X + l ) m - u + s  
1 u-i 

X s = o  

to 

Use of 

H m d  = Hm(Uaq5E) = f (m) (Hi&) (Hm-'q5Z) 
i = O  1 

then leads to 

(since H"4f: vanishes on the physically allowed surface). 
Now &(O) is an arbitrary function of position. Hence 

is, being the value of U, (0) at y ( 0 ,  t), an arbtriary function of time. 

interval [0, r], it follows that the numbers 
Since the polynomials r m / m  ! provide a (non-orthonormal) basis for functions on the 

are arbitrary. But 

Appendix. Proof of theorem 1 

Consistency is ensured by an iterative process. Proof will be by induction on the sth step 
of this process. Consider the first step. We demand 

Ho& = (4,461 ub (AI) 

is antisymmetric. Consequently a suitable linear transformation 
on 9?o, iB0 being the physically allowed surface on which the constraints vanish. 

on the set of constraints will lead to new primary constraints 4;  for which 
The matrix 

Denote by nl the number of rows of the non-singular sub-matrix. By assumption (2) 
n1 is constant on a0. 
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Define 

4:) = 4; a = 1, .  . . , n1 
a = 1,. . . , n -al  

a = 1, .  . . ,n1 
a = 1, .  . . n -n1. 

4?”- - r#Ja+,, ‘ 
(1) - 

U a  - -a  

uh‘” - - Ua+nt 

Equations (Al) may be solved for the U:” which are therefore fixed functions. The 
U?’) remain arbitrary. The equations of motion are genereated by 

def Hlfuy’. &+1) = (Ho+Uh‘’. & ) + u h + ” .  ($h+”* 

The equations (Al) are only consistent if 

H ~ # I ; C ” ( = H ~ ~ ~ ‘ ”  on go) = 0. 

These conditions, to the extent that they are independent of each other and the 
primary constraints, must be imposed as new secondary constraints. There is no loss of 
generality in treating them as if they were all so independent. It is now necessary to 
demand that the H1q5?” are conserved. And so on. 

Now assume that the following inductive hypotheses hold after the tth iteration: 
(a,) The original, primary, constraints can be written as linear combinations of the 

members of r + 1 sets of constraints. The sth set, s c r, contains n, b 0 elements, and its 
ath element may be written q5:). The (r + 1)th set contains n-Z:=l n, b 0 elements, and 
its ath element may be written 4rr ) .  

(b,) The Hamiltonian H, may be written 

where the U$’ are not arbitrary. 
(c,) The equations of motion are generated by 

H r + U h + r ) .  &” 
where the U:” are arbitrary. 

(d,) Further, secondary, constraints have the form 

H 2 2 ’  for l s s < t s + r .  

(In this and other inequalities +r  is to be read as r + 1. The case +r is always included 
unless otherwise stated.) 

These are possibly not all independent, of each other, or of the primaries. Some may 
even vanish identically. The primary constraints, and those secondaries with s C i, 
define the surface 4ei. Equality on 4ei will be written =i. 

(e,) The matrix whose elements are, for given s, 4hS+1)HSq5f+1) is non-singular and 
(anti-) symmetric on 9, provided s is odd (even) and less than r. 

(f,) For all functions X, 
x =, OJHX = s + 1 0  

(H%F)(H$t ) )  = s + t  0 

if s < r. 

(gr ) 

(hr) H 2 2 ’  =,-I 0 

if i o r j > s  +t + 1 c r. 
if 0 < t c s c r. 
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From these statements follow: 

(ir) ( H 3 2 ) ) ( H $ ! ) )  = s + t  - (H;-l&))(H;+l&)) if i or j > s  + t  G r 

(a consequence of Jacobi's identity, (f,) and (g,)). 

(consequently H :  (X 4) =s-l X - (H:c$)) where X is any function and 4 any primary 
constraint. 

(iii,) 

In particular 4r"X =s 0 if s < r (a consequence of (g,) and the definition of 9,). 
All these statements hold for the case r = 1. Assume for r and consider the case 

r + l :  
Observe that the Poisson bracket (PB) of H, + U:,) q5h"' with every constraint but 

the H$r"  vanishes on $2, (by (iii,) and (h,)). The consistency requirement then is 

(A2) 

Repeated application of (i,) shows that the matrix is (anti-) symmetric if r is odd 
(even). Hence, using (ii,) and (iii,), there exists an orthogonal matrix A such that 
equations (A2) are equivalent, on 9, to 

x =s o+(H%!')x = i + s  o if j >  i +s + 1 s r. 

H;+l&r) = ((Hr&")&") . Up. 

(A29 H;+14rr)' = ( (H%Fr)' )+Fr) ' )  . 
where 

U(+rY (+r) 4:"' =Aaa . 4 r r )  a = A a a  U, 

and 

/ non-singular1 \ 

The non-singular sub-matrix is n,+l x nr+l. By assumption (2) nr+l is constant on 9, 
Define 

a = 1,. . . , +;+I) = 4rrY 

and 

4hf(r+1)) = 4 ( + r ) '  a+n,+l a = I , .  . . , n - 2' n, 
S E 1  

and similarly for U :+') and U h+('+')). 
to them we have the new secondary constraint equations 

+ ( r + l )  The u t + ' )  are fixed by equation (A2'). The U a  remain arbitrary; corresponding 

(A41 H;+1&('+1) = 0. 

Hr+l = H, + U?') . &+I). 

Define 

Now consider the inductive claims (a,+l) -* (h,+l). 
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The first three are immediate. 

(dr+l) Hs+14!) = s - l  Hs4bl:' if i s + ( r + l ) ,  s ~ r .  

[In fact, by (iii,), it is true for s = 1. Assume for s < r. Then 

by (f,) and (iii,) H;I:+:' = s  (H, + U b  ( r + l )  . 4:+1))~;4$) 

= E  Hf"4h" by (iiir) 

(since Hs4:' 0 by (d,), (h,) and (ii,)).] 
It then readily follows that 

2 E %SO iff H:+14f)l, = 0 for all s s s o s r +  1, i , s + ( r  + 1). 

(A41 g' Ives a new row. 
So we may replace H, by H,+l everywhere in the table of constraints. Observe that 

(e,+l) Consequence of (e,), (A3), (A5) and (iii,). 
(f,+l) Consequence of (f,), (iii,) and the definitions. 
( g r + l )  First observe that, as a consequence of (ii,), (g,) continues to hold if we write 

4$+" ahd 4:(r+1) in place of 4h'" Proof is now by induction. First I shall show 

c$:'Hs+lC"(" 0 i f i > s + l c r + l .  

In fact, 

Hs+142) =r-l  H:C#J~) by (A5). 
The result then follows from (iii,) if s < r. If s = r and j S r it follows from (h,) and 

(iiir). If s = r and j = ( r  + 1) or +(r + 1) it follows from (A3). This covers every case. 
Now make the inductive hypothesis 

(H:+i4bj:')(Hs+14P) = t t S  0 if i > t + s  + 1 s r + 1 and t s to< r. 

The same result then follows for to+ 1 by use of Jacobi's identity and (f,+l). 

(hr+l) Hf+l4h" zi-10 j < i s r + l ;  

if j s i s r has a consequence of (A5) and (h,); if j 9 r and i = r + 1 by (A5), (h,) and 
(frtl); and if j = i = r + 1 by (A5), (f,+l) and the definition of Hr+l. 

This concludes the inductive part of the proof. 
Now for some r, W, = Wr-l (it may of course happen that W, is empty). for this r 

define 
( + I )  4: = 4(&,+r) H=Hr u a = u a  . 

Observe that H is first-class. The 4: are first-class by (g,). The Hs4: are then 
first-class by the result of Dirac (1964), namely that the PB of first-class quantities is 
itself first-class. 

All that remains is to show that there are no more first-class constraints (and hence 
that the Htq5t' constitute the complete linearly independent set of second-class 
constraints). This follows if the matrix whose element on the ath row and bth column 
has the form 

(H":))(H'#,(j) b )  

is non-singular on Wr- l .  

0 G s, t < i, j respectively c r ,  a, b d ni, nj respectively 
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To prove this, it is convenient to re-label the constraints 

r - 2  Di, ia zf H r - i - j - 1 4 g - j )  i = o , 1 , .  . .,[TI, j = o , 1 , .  . . , r - ~ ( i + l )  

where [ x ]  means greatest lower integral bound on x. 

for all i, j ,  k,  1, a, b. 

for all i, j ,  k,  a, b. 

if i < k or i = k and j<1. 

The following results are consequences of (e,), (g,) and (i,): 

6) 
(ii) 

(iii) 
(iv) c;c’, =r-10 if i # j .  

(v) The sub-matrices whose elements are Mab = RjaDjb are non-singular for every i 

(vi) The sub-matrices with elements Mab = CtCb are likewise non-singular for 

R ~ ~ R ;  =r-l o 
R$f: =r- l  0 

R ; ~ D : ~  = r - l  o 

and j .  

every i. 

Consequently, the matrix in question has the form given in table A l .  Observe that 
the R-D sub-matrices are block triangular with non-singular blocks on the diagonal. 

Table Al .  

X denotes a non-singular submatrix 
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They are therefore non-singular. The same is true for the C-C sub-matrix. But these 
sub-matrices are themselves the blocks on the diagonal of the whole matrix which is also 
block triangular. Therefore the whole matrix is non-singular. QED 
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